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Introduction

Plasmas in the cusp with energies less than several
keV /e, except for the low-energy (less than ~100 V)
ionospheric component, have been long understood to
be directly from the solar wind. The energetic particle
data from the POLAR spacecraft recently called into
question the origin of high-energy plasmas in the cusp.
These cusp energetic particles (CEPs) first documented
in the CAMMICE and CEPPAD data have energies
above the typical solar wind energies up to hundreds of
keV/e [Chen et al., 1997, 1998]. Ion composition mea-
surements show that they are of solar wind origin. Be-
cause energetic particles were not observed in the solar
wind during the CEP events, the authors suggest that
CEPs are accelerated locally in the cusp. Since ions
gain up to about twice the AlfVen speed (correspond
to ~1 keV) across the magnetopause current layer [e.g.,
Cowley, 1982], this acceleration cannot account for the
observed high energies of solar wind ions. However, an
important source of energetic ions that was ignored in
the previous study is the Earth’s bow shock.

Energetic ions are ubiquitous upstream and down-
stream from the Qy bow shock. Numerous observations
[e.g., Ipavich et al., 1981; Mébius et al., 1987; Gosling et
al., 1989; Ellison et al., 1990; Fuselier et al., 1995, and
references therein), theoretical work [e.g., Lee, 1982],
and simulations [e.g., Ellison et al., 1990] have shown
that ions at the Q| bow shock contain a Maxwellian core
distribution as well as an energetic tail distribution with
energies up to several hundred keV and above. Solar
wind ions are energized to these energies via the first-
order Fermi acceleration process. All the ion species
have a similar spectral shape with the same e folding
at ~20 keV/e. The ion energy spectrum mainly de-
pends on the solar wind density and velocity [Trattner
et al., 1994]. Energetic ions downstream from the Q
bow shock are nearly isotropic and flow away from the
shock. In this paper, we present POLAR plasma and
field data acquired in the cusp during CEP events and
relate these to observations at the bow shock. We sug-
gest that the observed cusp energetic ions simply come
from the solar wind after acceleration at the shock.

Observations

On June 20, 1996, Hydra [Scudder et al., 1995] and
CAMMICE detected intense ion fluxes from 6 to 7
UT while POLAR was traveling poleward through the
northern cusp. Cold, magnetosheath-like electrons were
also measured by Hydra during this interval. The aver-

-

age energies for the electrons and ions are ~30 and ~350
eV, respectively. Figure 1 shows the spin-averaged ion
distribution function from 0602 to 0658 UT. Hydra ions
(assuming H*) with energies from 17 eV to 19 keV (cor-
rected by the spacecraft potential) from detectors 9 and
10 of the DuoDeca Electron Ion Spectrometer (DDEIS)
are indicated by triangles. CAMMICE data are the
total ion measurements assuming H* response in the
Double Coincidence Rate (DCR) channel of the Mag-
netospheric Ion Composition Sensor (MICS) from 1 to
270 keV indicated by squares. A similar detector was
flown on the CRRES satellite [ Wilken et al., 1992]. The
two Hydra detectors were chosen to match the viewing
direction of the MICS detector. Both instruments are
well inter-calibrated for this event as illustrated by the
match between triangles and squares over the energy
overlap (1-20 keV). Small differences are attributed to
different efficiency for different ion species in the two
instruments. The whole spectrum is continuous with a
Maxwellian (< 10 keV) distribution and a non-thermal
(> 20 KeV) component which is fit by a power law
with an index of 4.73. The MICS fluxes above ~150
keV were low and close to the cosmic ray background.
Energetic and high charge-state ion (He*? and 0>*?)
fluxes detected by CAMMICE like the H* flux were also
simultaneously enhanced in the cusp. It suggests that
the cusp energetic ions originated in the solar wind.
Interplanetary magnetic field (IMF) data acquired
with the WIND Magnetic Field Investigation (MFT)
[Lepping et al., 1995] during this CEP event are pre-
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Figure 1. Ion energy spectrum measured by Hydra
and CAMMICE on June 20, 1996. See text for details.
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Figure 2. IMF cone angles and GSM components mea-
sured by WIND/MFI on June 20, 1996.

sented in Figure 2. The averaged solar wind speed ob-
tained from the WIND Solar Wind Experiment [Ogilvie
et al., 1995] was ~450 km/s. Estimated time delay for
solar wind propagating from WIND to the subsolar bow
shock is ~45 mins. Since WIND was located within 7°
of the Sun-Earth line, IMF B, (B,) was likely negative
(positive) at the magnetopause during this event. The
angle between the IMF and the Sun-Earth line, i.e., the
cone angle (6px), was mostly less than 65° from 0515
to 0615 UT. This IMF geometry suggests that the Q
bow shock was located during this CEP event in the
sunlit southern hemisphere, near the nose.

He*? spectrum from TIMAS [Shelley et al., 1995]
and CAMMICE for another CEP event on August 27,
1996 [Chen et al., 1997] is shown in Figure 3. The
TIMAS data presented here have not been corrected
for a count rate dependent spill over from the coex-
isting H* population. This contamination accounts for
the discrepancy between TIMAS and CAMMICE fluxes
below ~1 keV/e. Otherwise, TIMAS and CAMMICE
data agree well. Similar to the H* spectrum in Figure 1,
the He™? spectrum has a non-thermal component above
~20 keV/e. The IMF conditions here are similar to the
June 20 event, i.e.,, B, <0, B, > 0, and fpx < 65°.
To compare the observations in the cusp with those at a
possible bow shock source location, AMPTE/IRM ob-
servations downstream from a “typical” Q) bow shock
taken from Figure 2a of Ellison et al. [1990] are plotted
in Figure 3. The agreement between the energetic Het?
spectra at two locations is quite remarkable, suggesting
that the cusp spectrum is directly extracted from the
parent bow shock source region.

To further compare the cusp and bow shock spectra,
a range of the He™? fluxes downstream from the Q)
bow shock is shown in Figure 3 as the shaded region.
The AMPTE/IRM SULEICA data were selected in the
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Figure 3. He'? spectrum measured by TIMAS and
CAMMICE on August 27, 1996. See text for details.

1986 database for similar solar wind density and bulk
speed and IMF orientation as observed on August 27,
1996. Spectra are extended beyond 160 keV /e accord-
ing to a power-law relation from the data detected at the
last two energy channels for easy comparison with the
“MeV” ion flux observed by the CAMMICE/HIT detec-
tor. The HIT flux is calculated from Figure 1 of Chen
et al. [1997] assuming that Helium ion charge state was
+2. Because the energy band pass of the HIT detector
is very wide, 0.52-1.15 MeV, the observed flux could be
the response near the lower limit of the pass band at
260 keV /e which corresponds to 0.52 MeV total energy.
By taking into account this uncertainty, the HIT flux
is consistent with the bow shock spectrum. The aver-
aged HIT flux of the 1996 CEP events from Figure 7 of
Chen et al. [1998] is even lower and well described by
the average AMPTE/IRM bow shock spectrum.

Low-frequency electric and magnetic noise and tur-
bulence are commonly detected by PWI [Gurnett et al.,
1995] and MFE [Russell et al., 1995] onboard POLAR
during the CEP events. Preliminary study of PWI ob-
servations indicates that intense low-frequency turbu-
lence of large temporal/spatial scale is rare when CEPs
are absent. As shown in Figure 4, wave energy density
from PWI integrated from 4.9 Hz to 10.56 (336.6) kHz
for the 1-D magnetic (electric) component is roughly 5
orders of magnitude less than the plasma energy den-
sity for the June 20 event. Because this component is
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Figure 4. Comparison of wave (PWI and MFE) and
particle (Hydra) energy density on June 20, 1996.

greater than or comparable to the other two compo-
nents, the total wave energy density would probably be
well below the plasma energy density. Assuming no spa-
tial variation and DC component in the MFE magnetic
field data, the maximum ULF wave magnetic energy
density is only ~10% of the plasma energy density. This
excludes the energy of the energetic ions which would
increase this discrepancy. Low-frequency waves accom-
panying energetic ions are also frequently observed at
the Q) bow shock [e.g., Paschmann et al., 1979]. Wave
energy density there is comparable to the value in the
cusp [Mébius et al., 1987].

Discussions and Conclusions

Most CEP events occurred in 1996 under IMF B, <
0, B; > 0 conditions [Finkemeyer et al., 1998]. We have
examined more than 6 months of POLAR and WIND
data for the northern cusp and note that besides the
above condition, the IMF cone angle (6px) is relatively
small during CEP events. In addition, CEPs are rare

‘when B, < 0 and fpx is relatively large. The two CEP
events presented above are typical examples. Both the
cusp H* and He*? spectra are similar to those down-
stream from the Q) bow shock. The observed cusp
energetic ions can be simply explained by a model of
transporting bow shock accelerated ions across the mag-
netopause into the cusp along interconnected field lines.

The concept is illustrated in Figure 5. IMF points
north and away from the Sun. As the IMF field line
A and the lobe field line B approach each other, they
reconnect at the point X at the high-latitude magne-
topause according to the anti-parallel merging hypoth-
esis [Crooker, 1979]. It results in a new open magnetic
field line C convecting sunward at the magnetopause
and a new IMF field line D convecting tailward in the
magnetosheath. The field line C is connected to the
poleward edge of the northern cusp and sweeps through

Figure 5. Schematic diagram of the geospace for IMF
B; < 0 and B, > 0. Heavy lines are the bow shock
(solid) and the magnetopause (dashed). B field lines
are plotted in 3-D perspective to show their evolution.
Open arrows indicate the plasma flow direction.

the cusp as it convects sunward. It is also connected to
the southern portion of the bow shock near the subsolar
region where the shock surface is Q) downstream from
the ion foreshock for a small fgx. Downstream from
the Q) shock, energetic ions are nearly isotropic flowing
away from the shock [e.g., Figure 5b of Ellison et al.,
1990]. These ions simply follow the newly opened field
lines and directly enter the cusp. As the cusp field line
convects duskward (or dawnward) at the magnetopause
and tailward at the bow shock away from the nose, it
evolves into a lobe field line. Because the connection
time for ions and waves is much reduced downtail of the
shock [Ellison et al., 1990], fluxes of energetic ions there
diminish and would not enter the polar cap. Eventually
the ion bulk speed becomes super-sonic and almost all
the thermal ions cannot move against the flow across the
magnetopause. Observable precipitation into the polar
cap mainly comes from electrons as the polar rain.
When IMF B, < 0 with a large 0 px, dayside merg-
ing site shifts toward lower latitude of the magnetopause
equatorward of the cusp and the subsolar region of the
bow shock is quasi-perpendicular where Fermi acceler-
ation does not occur. Newly merged cusp field lines
convect tailward both at the magnetopause and at the
bow shock in the same hemisphere. In this case, the
Q) shock is located near the flank. For the same reason



discussed above, ions there are energized to lower ener-
gies than for the Q) shock with a smaller fpx case and
they flow downtail in the magnetosheath further away
from the cusp. This is consistent with the observation
of low energetic ion fluxes during such IMF conditions.

Another important factor for determining the cusp
location is the dipole tilt angle. For a tilt angle away
from the Sun as is the case during the winter season

in the northern hemisphere, the southern cusp is closer
to the subsolar point than the northern cusp. Dayside
merging takes place in the southern hemisphere first
and may not take place in the northern hemisphere for a
northward IMF condition. Energetic ions downstream
from the Q) bow shock would not have access to the
northern cusp. This seasonal effect has been found in
the 1996 CEP statistics [Chen et al., 1998]. A similar
effect was also found in the low-altitude cusp statistics
from the DMSP spacecraft [Newell and Meng, 1988]. In_
this case however, few thermal ions precipitate into the
cusp because the ratio of the magnetosheath ion bulk
flow speed and thermal speed increases away from the
subsolar point. .

The low-frequency electric/magnetic noise and tur-
bulence observed by POLAR in the cusp during CEP
events have an energy density less than 10% of the
plasma energy density. This would require a very effi-
cient way of converting the wave energy into the plasma
energy to produce the high energy tail. Such a mecha-
nism has not been proposed [Chen et al., 1998]. We note
that one cannot simply argue whether the wave am-
plitude implys the plasma energization or not. Wave-
particle interaction, such as gyro-resonance and Landau
process, can produce ion heating. However, as shown
above, the observed cusp ion spectra are similar to those
at the bow shock source. Waves of the same frequency
and comparable power are also observed at the Q) bow
shock. Besides, a statistical study using more than two
years of Hawkeye 1 data shows that ULF-ELF magnetic

noise is nearly always present in the cusp [Gurnett and
Frank, 1978)], whereas CEPs occur under preferred IMF
orientation and season. Thus the waves are most prob-
ably coincidental to CEPs rather than causal.

In summary, IMF orientation controls the bow shock
geometry, the dayside merging site and the magnetic
topology. Energetic ion fluxes downstream from the Q
bow shock are comparable to those observed in the cusp.
The waves are probably incidental. The cusp and the
Qi bow shock are magnetically interconnected during
CEP events. Therefore, bow shock accelerated ions can
simply follow the open field lines and enter the cusp.
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